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A CORRELATION COEFFICIENT FOR ANGULAR VARIABLES

S. Rao JAMMALAMADAKA and Y. Ramakrishna SARMA

1. INTRODUCTION AND REVIEW

Observations in many biological and physical sciences are made in the
form of directions in two or three dimensional spaces. For instance, a
geologist observes the azimuths of lee faces of sand ripples, foreset planes
of cross-beddings, orientation of elongate pebbles, etc. to study the currents
responsible for transportation and deposition of sediments in river beds. The
navigational direction of a migratory bird or a homing bird is observed by a
biologist. A meteorologist observes the directions of wind, rainfall or the
movement of clouds. In medical studies, observations in the form of
directions are made on vector cardiographs and X-rays. Studies on any
periodic phenomenon of known period such as biological rhythms can be
represented in the form of directions. In all such cases, a convenient sample
frame for two dimensional directions can be the circumference of a unit circle
centered at the origin. Similarly the surface of a unit sphere in three
dimensions centered at the origin, can be the appropriate sample space for
directions in space, each point on the surface representing an observable
direction. The analysis of directional data does not fit into the classical
methods of linear statistical analysis. A comprehensive treatment of the
analysis of directional data can be found in Mardia [11], Batschelet [1] and
Watson [19]. For a survey of the nonparametric methods in this area, see §.
Rao Jammalamadaka [7].

In many cases, observations are made on two or more directional variables
on the same object - as in all bivariate studies. For example, a biologist
may observe the wind direction and flight direction of homing birds. A
geologist may wish to examine if the orientatiomns of pebbles lying on foresets
can be correlated with the foreset azimuths, In such cases one has to make
precise the concept of association or correlation between two directional
random variables. In what follows, the concept of correlation between two
circular random variables is discussed. This aspect of statistical analysis
has recelved the serious attention of statisticlans during the last ten years
or so, although tests for independence date back to MacKenzie [10]. The
concept of a measure of dependence for random variables on a torus was

considered by Downs [2] and more formally by Mardia in [12]. Thompson in the
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discussion on the paper by Mardia [12], considered the problem from the point
of view of prediction and proposed a measure of correlation. However this

measure was not studied further except for some comments made by Jupp and

Mardia [9]. Johnson and Wehrly [8] have proposed a measure of angular
correlation, based on the method of canonical correlation. The asymptotic
distribution of sample angular correlation was also discussed there. Mardia

and Puri [13] have proposed a scale invariant measure of correlation and some
simulation studies were made to compare the sample analogue of this measure
with the one proposed by Mardia [12]. Stephens [18] developed a measure of
correlation based on measuring how close the unit vectors corresponding to the
two angles can be brought by an orthogonal transformation. This idea was also
used by MacKenzie [10] in connection with problems in crystallography and by
Downs et al [3] in studying statistical methods for vector cardiogram
orientations. Jupp and Mardia [9] introduced a general correlation
coefficient for random variables taking values in general Riemannian manifolds
and specialized it to the bivariate circular data. They also compare it with
other measures proposed earlier. Rivest [17] proposed a functioand g by
measuring separately the degree to which a can be predicted from g wusing
one of the relationships a = (+ f + #) mod 2n for some arbitrary fixed
direction @ and constructing a measure by taking the difference of these.
This leand B by measuring separately the degree to which « can be
predicted from B wusing one of the relationships o = (+ g + ) mod 2« for
some arbitrary fixed direction # and constructing a measure byand g Dby
measuring separately the degree to which a can be predicted from g using
one of the relationships a = (+ f + §) mod 2r for some arbitrary fixed
direction @ and constructing a measure by taking the difference of these.
This leads to the definition
E sin(al—az) sin(ﬂl—ﬂz)

= (1.1)
[E sinz(al—az) - E sinz(ﬂl—ﬂz)]l/z

P

where (ul,ﬂl) and (a2’ﬂ2) are independently distributed as (a,8) .

In all these studies, measures have been proposed mainly for testing the
hypothesis of independence or no association between the two random variables.
Another feature of these measures of correlation is that, except for those
proposed by Rivest [17] and Fisher and Lee [5], they take non-negative values
and then a sign is added as a secondary step in some cases. There are several
practical situations where there can be negative association between the two
variables and a measure which can exhibit such a negative association as well

as the positive association in a natural way (much like the Pearson’s product
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moment correlation in the linear case) is desirable. In what follows, a
circular correlation coefficient which has all the desirable properties of a
correlation coefficient is defined. The paper amplifies and provides some
further details on a definition that was given in Rao and Sarma [16]. A
sample analogue of the measure is introduced and its asymptotic distribution
is obtained. The third section deals with some parametric models and
illustrates how the definition given in section 2 works for these models. In
these special cases, estimates of the proposed measure and their asymptotic
distributions are derived. These estimates are then used to test hypotheses
concerning angular correlations. Finally a nonparametric correlation

coefficient is introduced in section 4.

2. A MEASURE OF CORRELATION
let (a,8) denote a pair of random variables which are directioms, both

measured as angles with reference to the same zero direction and the same

sense of rotation, i.e., both measured in the clockwise or in the counter
clockwise direction. Let f(a,8) denote the joint pdf on the torus
0<apf< 2r., Let p and v denote the circular mean directions of the

marginal distributions of a« and B respectively (cf Mardia [11] p. 45).

Then we define

E sin(a—p) sin(g—v)
[E sinz(a—,u) - E sinz(ﬂ—u)]l/2

P (a,8) = .1

as a measure of correlation between a and B. The motivation for such a
definition comes from the observation that E sin{a—u) = E sin(f—v) = 0 which
corresponds to the fact In linear statistlics, that the first central moment is
zero. Thus sin(a—u) and sin(f—v) can be taken to represent the deviations,
of a« and B from their mean directions u and v respectively and thus
the circular correlation pc(a,ﬂ) is simply the product moment correlation
between the sine components. Further motivation is given by the following

remark 2.1,

Remark 2.1: One may rewrite (2.1) as

E{cos(a—f—u+v) — cos(atf—u—v)) (2.2)
9 2 2,, (.1/2 :
[E sin"(a—p) + E sin” ()]

b (a,B) =

Observe that the first term in the numerator of (2.2), namely E cos(a—f—u+v)
represents how strongly the distribution of (e—u)—(f-v) 1s concentrated and
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this is a measure of the positive part of the correlation. Similarly the
second term in the numerator, corresponding to the concentration of

(a—p)+(p-v) distribution, measures the negative part of the correlation.

Remark 2.2: If p or (and) v 1is (are) not well defined, or arbitrary
because either or both a and g have uniform marginals, then g and v in
(2.2) are chosen in such a way that they maximize the two terms in the
numerator of (2.2) individually, corresponding to the positive and negative
parts of the correlation, i.e., to maximize IE cos(a—ﬂ—p+u)| and
|E cos(a+ﬂ—p—v)|. Thus, whenever there is ambiguity in the choice of the mean
direction, they are chosen to yield the largest possible association in both
positive and negative directions. This leads to the choice of p and v
such that (u—v) 1is the mean direction of (a—B) and (utv) 1s the mean

direction of (a+B). The numerator then becomes the difference in the lengths
of the mean vectors of (a—f) and (atf). With Ra+ﬂ = |E(el(uiﬂ)|' (2.2)

can now be written as

p. =R

. L = Ra+ﬂ)/2./[E sin(o—p) E sin’(B)] - (2.3)

It may be noted here that in this case (of uniform marginals) our coefficient
is equivalent to the one proposed by Rivest [17] in the sense that they differ
only in the denominators which are like the norming constants. It should,
however, be noted that the measure in (2.1) is different from that proposed by
Rivest [17] in the general case and the two are arrived at from entirely

different motivations.

Remark 2.3: The definition of the angular correlation p  as given in (2.1)
or (2.2) still makes sense even if (a,B) have support which is less than the

full circle, say a half circle.

Remark 2.4: The primary motivation for the definition (2.1) is to have a

suitable circular version of Pearson’s product moment correlation defined by

E[(X-E(X)) (Y-E(¥)}]

(2.4)
(L x-E) %) BB
Notice however that (2.4) can be written equivalently as
E{(X,-X,) (Y;-Y,))
172 1 72 (2.5)

2 =2 1/2
(E((X;X,) ) E((Y=¥p) )]
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where (Xl,Yl) and (X2,Y2) are independently distributed as (X,Y). While
our definition (2.1) is the circular analogue of (2.4), Fisher and Lee's [5]
definition (1.1) is the circular analogue of (2.5). In the circular case, the
definitions (1.1) and (2.1) are algebralcally different and yield different
values. The example in Johnson and Wehrly [8] gives a value of 0.1914 for the
sample analogue of (1.1) while the measure we proposed in (2.1) has a value of
0.2620.

Remark 2.5: In section 3 estimation and testing problems concerning p, are
dealt with, when some underlying population models are assumed. In these
cases, we consider methods of estimation such as MLE and exact tests for
hypotheses about Po It is shown below that when no further assumptions
about the population model are made, one can use rc,n for estimating p, as
well as for testing hypotheses concerning Pe

The following result summarizes the properties of P

Theorem 2.1: The circular correlation coefficient pc(a,ﬂ) in (2.1) or (2.2)
satisfies the following properties.
(a) pc(a,ﬂ) does not depend on the zero direction used for either
variable.
() o (a,;8) = p (B,a)
() -1=p(a,p) =1
(d) pc(a,ﬂ) =0 if o and B are independent, although the converse
need not be true.
(e} If e« and B have full support, pc(a,ﬂ) =1 iff
a = B + const(mod 27) and pc(a,ﬂ) = -1 iff o+B = const(mod 2m).
(£) pc(a,ﬂ) = p(a,B) the product moment correlation if o and B are

unimodal and are highly concentrated.

Proof: All the properties are easily verified except for (e). To prove (e),
suppose a = B+§ (a.e). Then p = v+6§ and comsequently (o—p) = (p-v) and
thus sin(a—p) = sin(f-v) (a.e) which implies pc(a,ﬂ) =1,

To prove the converse, one has by Cauchy-Schwarz inequality that
pc(a,ﬂ) =+ 1 iff sin(a—p) = bsin(f-v) a.e for some b = 0. Now suppose
pc(a,ﬂ) = 1. Then clearly b > 0, Moreover b has to be 1 1in view of the
fact that the ranges of (o—u) and (f-v) are the same. Thus it follows
that opu = g—v a.e or a = f+6 (a.e) where & = (p—v).

The other part can be proved in a similar way. m}
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To define a sample correlation coefficient, let (ai,ﬂi) i=1,...,n be

a sample of size n from some bivariate circular distribution. Then one may

define the sample analogue of p, as follows:

n
= sin(ai-an) sin(ﬂi—ﬁn)

1
rc,n “ n 9 _ n 2 _ 12 (2.6)
(i: sin (ai_an) - 3 sin (ﬂi—-ﬂn))
where ;n and En are the resultant mean directions of @l and
ﬂl’ — 'ﬂn respectively.
Let Ay - E(sin’(a—p)sind (B-v)) for 1,j = 0,1,2,3,4.
Define
12 - -
Tl,n = ? = 51n(ai—an) sln(ﬂi—ﬂn)
n
n n
1 2 o~ 1 2 -
T = — 3 sin“(a,—a ) and T = — 3 sin"(B.—B.)
2,n jﬁ 1 i n 3,n /;1 1 i "n

Then by the multivariate central limit theorem one has that

T =

. (Tl,n'TZ,n'TB,n) is asymptotically NBQ’Z) where

'

A= (All’AZO"\OZ) and

2 .
Mo A1 M0t M3’
2
e : Mo g0 *22720%02

2
Aos202

From this one immediately has the following

Theorem 2.2: If neither marginal is uniform, Jt—m(rc n—pc(a,ﬂ)) converges in
’

distribution to N(O,az) where

A A A
2 22 13 31
A vy ol pc(a‘.ﬂ) +

20702 Moaoror  Ro2/*20%02
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2
p_(«,B) A A A
N T R TV
Y0 ro2 20’02

Proof: Writing rc,n = Tl,n/’/TZ,anl,n the result follows by an application

of the so called §-method for functions of random variables (see eg. Rao [14]

p. 387) after some algebraic simplifications.

Corollary 2.3: If a and S are uncorrelated, i.e., pc=0 then ﬁ-rcn

converges in distribution to N(O,)\22/)\20A02).

Remark: When n is sufficiently large, Aij’s can be replaced by their

estimates

A

S

n :
i n . i
1 % sin (al_an) sim: (,B’e ﬂn)
£=1
Remark: This result suggests that even without any further assumptions being
made about the model, one can use oo for estimating p, as well as for

testing hypotheses concerning P

31 SOME PARAMETRIC MODELS
3.1 Wrapped bivariate normal distribution.

Let X' = (Xl’XZ) be a bivariate normal vector with mean p' = (pl,pz)

2 g
%1 12
and covariance matrix 2 . Let a = Xl (mod 22) and S = X2
N o
2

(mod 27). The distribution of (a,f8) 1s the wrapped blvariate normal with

characteristic function given by

p(m,n) = exp(i(mp1+np2) —%— (ma]2_+2mn012+na§)) (3.1)

where m and n are integers. To evaluate pc(a,ﬂ) in this case it is

convenient to use (2.2).

Let 6 = (a+f)(mod 2n) = (X +X,)(mod 2r)

§ = (oc=p) (mod 2x) = (X;~X,)(mod 27).
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+ . 2 2 = 2 2
Then 1 is WN(pl+p2, 2] + % + 2012) and § s WN(ul—pz, oy + 9, + 2612)
where WN denotes a wrapped normal distribution Thus the length of polar

+ 0
vector for § is

+
+ i§ 1,2 2
§(6) = |E(e™” )| =exp ( =5 (0] + 0, + 20,))
and that of 6§ 1is
= 1,2 2
(6 ) =exp | -3 (6] + 05 = 2012))
Similarly the lengths of the polar vectors of 2a and 28 are
2 2 .
¢ (2a) = exp(—201) and ¢((28) = exp(—202) respectively,

Further the mean directions of a and are u = p, (mod 27) and
1

Vo= py (mod 27) and the mean directions of 2a and 28 are a, = 2p1 (mod

2
2n) and EZ = 2u2 (mod 2x). Finally the mean directions of 8+ and 6§

are 5+ = (pl+y2)(mod 27) and § = (pl—pz)(mod 2n) respectively. Using

these expressions, after some algebraic simplifications, one has

(6 )cos (B —(uv)] = (5 )cos [ —(ut)]

Pc(a.ﬂ) . = = 172 (3.2)
[(1-¢ (2a)cos(a,~2u) ) (15 (2B) cos(B,~2v) ) ]
Now substituting the values, one finally has
pc(u,ﬂ) = (sinh 012)/[sinh ai sinh 05]1/2 (3.3)
Remark 3.1: The expression pc(a,ﬂ) in this case coincides with Az

obtained by Johnson and Wehrly [8] except that here the sign of association

between a and B is naturally incorporated.

Remark 3.2: From the expression for pc(a,ﬂ) it may be noted that pc(a.ﬂ) =0

if X, and X, are Iindependent. However even if X, and X2 are perfectly

1 2 1
correlated in the linear semse, it does not follow that P - 1 wunless o =
9y In this case, of course a = f+const. from (e) of Theorem 2.1, Similarly
when the linear correlation between Xl and X2 is -1 and o1 = 9y then
p = -1,
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Estimation of QCM: The Maximum likelihood equations for estimation the
parameters in this case are not tractable. So the parameters are estimated
using the method of moments on the random variables Zl = exp(la) and
Z2 = exp(iB). Since Pe does not depend on By and Boy for simplicity,
they are assumed to be zero. Then equating the theoretical moments with the

corresponding sample moments, one has the estimating equations

N =
Q

E(Z,) = E(cosa) = e_ L. N ; cosa, = X (sa )
1 n i Y
=10
2% 11 =
E(Zz) = E(cosf) = e == 2 cosB, = Y (say) (3.4)
n i )
E(Z.Z, ) = E cos(a+B) = exp(— 1 (02+02+20 »
172 2 V1727712

% > cos(ai+ﬂi) =z (say)

Solution of these equations leads to
A A

0% = - 210X, o) = = 2log7 and o;, = log(X¥/Z). (3.5)

It is interesting to note that the minimum distance method which minimizes the
sum of the distances of the observed (cosai,cosﬂi, cos(ai+ﬂi)) from their
expectations suggested in Rao, J.S. [15], leads to the same estimates, which

are shown there to be consistent and asymptotically normal. 1In fact by an

application of multivariate central limit theorem, it follows that (i,?,f)

is asymptotically normal with mean vector

2+02+2¢7

ey l 2 . l(a )
2 92 24917997492
i e )

(e , €

and covariance matrix

—02 1,2 2 (4 -0 B 02 2 e
(1—e 1)2 - i(al+02) [e 12+e 12 _1] e 2 2[ —(al+012)]
e = 1l-e
2 2
2 1, s
. . (1=e 2.2 e 271 [l—e—(02+012)]
- ] 2
2 2
1te -2 (01+02+2¢712)
* * =
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This in turn yields the asymptotic normality of the estimates in (3.5).
Finally one has that the estimated correlation coefficient

. ” ¥ "2.1/2
po(@,B) = sinh o ,/[sith o} sinh o5) /2 (3.6)

is a consistent estimate of P and 1s asymptotically normal with mean
c

and varlance

012. 02 2,:;c cosh %19
1+tanh-2—tanh2—— 3 2172
(sinh ¢; sinh o3) /
1 2
1 1 2 21,2
{2 sinh 79 + cosh 919 = 1 - 2 sinh 5(01+012))
tanh 9
1 12 N 21 2
+ — {2 sinh 2 9 + cosh %1 1 2 sinh 2(02+012))]
tanh o,
sinh? 2 o2 simn® 157
2 2 7 2 "2
+ 2p + (3.7)
2 2 2 2
tanh™ o tanh™ @
1 2
Remark 3.3: The estimate obtained here can also be used for large sample

testing of hypotheses concerning P

3.2 A model with uniform marginals
Suppose (a,B) is a random vector such that a has the uniform
distribution on the circle and the conditional distribution of p given «

is circular normal with density function

1 k cos(f-aa—0) (3.8)

£(Ble : 0,a,k) = ’2"17{—) e

where k20, 0=<4<2r and a=+ 1  are the unknown parameters and Ip(k)

is the modified Bessel function of first kind and pth order.
Notice that the marginal distribution of B 1s also uniform on the
circle and the joint distribution of o and g is given by the density

function

1

f(a,8 : 0,a,k) = 2
b4 Io(k)

exp (k cos(f-aa—0)) . (3.9)
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The model with a = 1 has been considered before by Johnson and Wehrly
[8]. 1In this example, since a and p have uniform marginals, p and v
are arbitrary and will be chosen later as stated in Remark 2.2. Suppose for
definiteness that a = 1. In the numerator of Pe in the definition (2.2),

the second term is zero since

E cos(atf—pu—v) = EaE cos[fa—b0+(2atf—p—v)]

Bla

1, (k)

. —IOW Ea cos(2a+8—p—v) = 0

The penultimate step here follows from (3.8) and the last step because a is
uniform. Since p and v are arbitrary, their choice is made so as to
maximize E cos[a—B—(p—v)].

This happens when (v—u) 1s the mean direction of (f—a) which from
(3.9), is 6. Also from (3.9)

E cos(f—a—8) = Il(k)/IO(k)

Combining this with the fact that E sinz(a—p) = E sinz(ﬂ—v) - % (because of

the uniform marginals), one obtains
P = Il(k)/Io(k). (3.10)

Similarly when a = -1 it can be shown that

po = —Il(k)/Io(k). (3.11)

Remark 3.4: In this model again, the correlation coefficient P coincides
with the one given by Johnson and Wehrly (8] but only when a = 1. 1In the

present discussion, the possibility of negative correlation is also permitted.

Estimation of Pt In this case the maximum likelihood estimates of #,k and
a =+ 1 may be obtained as follows. Fix a = +1. Then the ML estimates of

A

the parameters say, k+ and 0+ denoted by k+ and 0+, are obtained from

the usual equations

dlog L _ o . o d
38 = 2 sln(ﬂi—ai—ﬂ) = an

(3.12)
slog L 114Ky

3k = n Io(k+) -z cos(ﬁi—ai—0+) =0
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where L(a,k,f) denotes the likelihood of the sample. Denote (Bi—ai) = 6;

+ ] . - - o
and (ﬂi+ai) = Ei. Then the equations (3.12) give 0+ = § and k+ is
obtained from A(k+) = % R _, where § and R _are the mean direction and
5 )

the resultant length of 61, A

Similarly, fixing a = -1, the ML estimates of the parameters say, k_ and

,6; respectively and A(k) = Il(k)/Io(k).

A N N

§  are obtained as §_ = 5" and Ak ) = % R6+ where §' and R 4 are the
s

mean direction and the resultant length of 6;, oo ,6; respectively. Finally

N
a 1is estimated to be that value of a which corresponds to the maximum of

L(l,k+,0+) and L(-1,k_,8 ). This, however, amounts to choosing

a = (3.13)

A A ~ A
: -n
since L(1,k+,0+) - const.Io(k+) exp(k+R6_)
- g(R _) , say
5
a5 A _n A
and L(—l,k+,0+) - const.Io(k_) exp(k+R6+)
- g(R )
5+

where g(-) 1is a monotonic increasing function (Mardia, [11] p. 134).
Thus the ML estimate of pc(a,ﬂ) is

1
A ~ A = R _ 5 5+
pc(a,ﬂ) = a‘A(k) = [ (3.14)

Remark 3.,5: Mardia [12] considered the case where a and g have uniform

marginals and proposed the correlation coefficient

r = max(R _,R ) = |p_(a,8)].
5 6" ¢
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Thus the correlation coefficient proposed here coincides with that
proposed by Mardia [12] in absolute value and moreover incorporates the sign

of association in a matural way.

Test for HO : Qc!a,é) = 0: This hypothesis is equivalent to k = 0. TUnder
this hypothesis, o and B are independent and have uniform distributions on
the circle (cf (3.9)). Hence both 6+ = p+a and 5§ = p—a have uniform
distribution on the circle and moreover they are independent. Hence R + and
§
R are i.i.d random variables.
§
(a) To test Po = 0 vs Peo >0 (or Pe < 0) the test is based on R _ (or
§
R +). In either case the table for Rayleigh's test (Table 2.5 Mardia
§
[11], p.300) can be used without any modification.
(b) Suppose now that the alternative 1is two sided, P = 0. Then large

values of |pc(a,ﬂ)| lead to the rejection of H This is equivalent

0"

for large values of max(R _,R ). Since, under H.,

0 st s 0

the probability density function of R . (or R _) 1is that of the
s 5

resultant léngth of n random unit vectors, the pdf and cdf respectively

to rejection of H

are given by,

«©

£ (r) = x g tJo(tr)Jg(t)dt (3.15)

«©

F(r) =1 £ Jl(tr)Jg(t)dt for 0

1A
aj
1A
=]

where Jk(t) are the standard Bessel functions of first kind.

Hence the pdf of max(R ,R ) 1is
st s

gn(r) = 2fn(r)Fn(r) for 0 <r <n,

Since the upper 100(l—a) - percentage point of gn(r) corresponds to the

100/(1—a) percentage point of fn(r) one may adapt the table for
Rayleigh’'s test mentioned above. On the other hand, if n is large,

writing the approximation that % R2+ is x2(2), gn(r) may be
s

approximated by

2 2
g(m) = SE /My, (3.16)
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A table of percentage points for np2 = % [max (R +,R _)]2 based on this
5 5
approximation as well as on Monte Carlo results, is given by Stephens

[18) and is reproduced partly in Batschelet ([1] p. 183).

(c) Similarly tests for the hypothesis P = pg can be converted into tests
for k and critical values may be obtained using the known distributions

of the resultant lengths for circular normal samples.

4. A NONPARAMETRIC OR RANK CORRELATION FOR ANGULAR VARIABLES.

The purpose of this section is to demonstrate how definition (2.1) can be
used to obtain a rank correlation measure.

Given (ai,ﬂi), i =1,...,n, a random sample of size of n from some
bivariate circular distribution, measured with respect to some arbitrary zero

direction and sense of rotation these are first converted into uniform scores

(Batschelet [1] p.186). That 1is, one of these sets of variables, say
(al,...,an) are linearly ranked and then let Ty denote the rank of the ﬂi
which corresponds to the ith largest oy for i =1,...,n. Thus the
observations (ai,ﬂi), i =1,...,n are converted into ranks (i,ri),
i=1,...,n and are replaced by the uniform scores defined by
2rr
2ni i
(7l and ¢i -5 (4.1)
for i = 1,...,n. The nonparametric (or rank) circular correlation . is

defined now as the circular correlation Pe for the uniform scores (wi,¢i),

i=1,...,n. Using definition (2.1)

n
% sin(p;—~)sin(¥;—$)
K : Z P 2, - 172 ° (4.2)
[Z sin®(p,—p)Zsin” (¥;—¥)]

n .
Noting that X sin2 (Z%l - @) = % for any choice of ¢, (4.2) reduces to
1

n
n, = L% coslo, ¥~ - = S coslogtby-HD] - (4.3)

Now since 5 and ﬁ are arbitrary, they are chosen again (see Remark 2.2) to

maximize the two terms on the RHS of (4.3) individually. This maximization

occurs when (;*J) is the resultant direction of 6; = (wi—¢i), i=1,...,n
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and (;+$) is the resultant direction of 8; = (¢i+¢i), i=1,...,n. Thus
R . (4.4)

The coefficient n, being the difference in the lengths of the resultants is

clearly invariant under any choice of zero direction or sense of rotation.

R R

- +
Mardia [12] suggests the coefficient which is max - —%— and adding the
sign corresponding to the larger resultant. Here (4.4) on the other hand,

incorporates the sign naturally depending on whether the positive or negative
part of the correlation dominates the other.

One may compare this coefficient with that proposed by Fisher and Lee
{4]. Our measure (4.4) differs from their definition in the same way that our
p. (cf eqn. (2.1)) differs from their circular correlation (1.1)(cf. Fisher

c
and Lee [5]).
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